We want a sensor that knows *what* is burning.
Buscamos sensores que distingan *qué* material es.
Thesis Objectives
Sensitivity & Size Optimization
Maximize sensitivity per unit area.
Liquid Measurement & Automation
Reliable characterization of fluids.
AI-Enabled Sensing Modalities
Selectivity and remote sensing via ML.
Outline the three main pillars: making it sensitive/small, measuring liquids reliably, and adding AI for
selectivity.
Tres objetivos: 1) Más sensibilidad en menos espacio, 2) Medir líquidos de forma fiable y automática, 3) Usar IA
para identificar materiales a distancia.
Part II
Fundamentals
Transition to the first section: Fundamentals of microwave sensing.
Your browser does not support the video tag.
Explain how microwaves interact with matter (penetration, reflection) without contact.
Las microondas interactúan con la materia sin tocarla; analizando cómo rebotan o la atraviesan, podemos inferir
propiedades del material.
Planar Technology
Guiding Waves
Microstrip & CPW lines
Confines field to a specific region
Benefits
Controllability
Low Cost
Easy Fabrication (CNC)
Introduce planar lines (microstrip) as the "pipes" for waves. Emphasize low-cost fabrication.
Usamos tecnología plana (circuitos impresos) para guiar las ondas. Es barato, fácil de fabricar y permite
concentrar
el campo en la zona de medida.
Resonators
Sensing Region: Where field interacts with MUT (Material Under Test).
Resonance: High sensitivity to dielectric changes.
Topology: Can be shaped to optimize interaction.
Resonators are the heart of the sensor. They "ring" at a specific frequency, which changes when the material touches
them.
Los resonadores son el corazón del sensor. "Resuenan" a una frecuencia específica que cambia cuando el material toca
el sensor.
Measurement: VNA
Vector Network Analyzer (VNA): The "instrumental" part of the measurement.
Function: Generates signal and analyzes reflection and transmission.
Parameter: Reflection ($\rho$) and Transmission ($\tau$) Coefficients.
The VNA is the instrument we use. It tells us how much signal comes back and with what phase.
El VNA es el instrumento que usamos. Envía la señal y mide cuánto rebota y con qué retardo (fase).
Frequency Variation Sensors
Principle: Resonance frequency shift caused by MUT.
Pros: Simple structure but complex readout.
Cons: Spectrum analysis required for measurement.
Frequency variation is the most common method. Simple but needs calibration.
Magnitude Variation Sensors
Principle: Variation in Q-factor or peak/notch attenuation.
Pros:
Simple scalar readout.
Single frequency operation.
Cons: Susceptibility to noise.
Magnitude variation is simple but often less sensitive and noisier.
Phase Variation Sensors
Principle: Phase shift at a single frequency.
Pros:
Single frequency operation.
Robust against EMI.
Cons: Trade-off between size and sensitivity (requires long lines).
Phase variation offers robustness and single-frequency operation, but size can be an issue.
Readout Strategy
Single Frequency Operation:
Focus on one frequency where sensitivity is highest.
Reduces readout complexity and cost.
Accessibility:
From Lab Equipment to Portable Devices (LiteVNA ~100€).
Low cost phase detector (AD8302 ~5€).
Designing for single frequency allows using much cheaper electronics later on.
Diseñamos para medir en una sola frecuencia, lo que permite usar electrónica mucho más barata (de equipos de
laboratorio a dispositivos de 100€).
Part III
Sensitivity Enhancement
Transition to the core contribution: Sensitivity enhancement techniques.
Defining Sensitivity
Sensitivity ($S$) is defined as the change in the phase of the reflection coefficient ($\phi_\rho$) per unit
change in permittivity
($\varepsilon_\mathrm{MUT}$).
$ S = \frac{d\phi_\rho}{d\varepsilon_\mathrm{MUT}} $
Define sensitivity mathematically. Show the steep phase slope we aim for.
La sensibilidad es cuánto cambia la fase cuando cambia el material. Buscamos una pendiente muy pronunciada
(gran
cambio de fase por pequeño cambio de material).
Sensitivity Decomposition
We can decompose sensitivity into two independent factors:
$ S = \underbrace{\frac{d\phi}{d\upsilon}}_{\text{Electrical Transformation}} \cdot
\underbrace{\frac{d\upsilon}{d\varepsilon_\mathrm{MUT}}}_{\text{Field Interaction}} $
$\upsilon=\beta l$
$\upsilon=C^\prime$
Key theoretical contribution: separating the physics (field) from the circuit (transformation). We optimize them
separately.
Dividimos el problema en dos: cómo el material afecta al sensor (física) y cómo el sensor convierte eso en señal
(circuito). Optimizamos cada parte por separado.
Field Interaction ($\frac{d\upsilon}{d\varepsilon_{MUT}}$)
Physics: How the electric field penetrates the material.
Optimization:
Maximize field concentration.
Use thin substrates or CPW structures.
This part is about geometry and physics. Making sure the waves actually touch the material.
Esta parte es física: asegurar que las ondas toquen el material. Maximizamos la concentración del campo eléctrico.
Electrical Transformation ($\frac{d\phi}{d\upsilon}$)
Circuit: How the sensor circuital elements converts parameter change to phase shift.
Optimization:
Phase Slope Enhancement Techniques.
This is the term where we can gain orders of magnitude!
This is where the magic happens. We can design circuits that amplify the small physical change into a huge phase
shift.
Aquí está la magia. Diseñamos circuitos que amplifican el pequeño cambio físico en un gran cambio de fase.
Four Ways to Increase Sensitivity
1. High/Low Impedance Inverters
Cascading phase shifters, increasing overall sensor area.
2. Weakly Coupled Resonators
Exploiting split resonances due to low coupling, sensing region.
3. Resonance-Antiresonance
Smallest sensing region, dynamically tunable coupling.
4. Loss Engineering
Using loss as a design parameter, compatible with previous techniques.
Briefly introduce the four main techniques explored in the thesis.
Exploramos 4 técnicas principales para aumentar la sensibilidad: inversores, resonadores acoplados,
resonancia-antiresonancia e ingeniería de pérdidas.
1. High/Low Impedance Inverters
Concept: Cascading 90° transmission lines (inverters) with high/low impedance to multiply the
phase
slope.
Adding inverters increases the stored energy/delay, multiplying the phase slope without changing the sensing head.
Añadir líneas de transmisión especiales multiplica el cambio de fase sin tener que cambiar el sensor en sí.
Inverters: Implementation
Structure: Stepped Impedance Resonator (SIR) + Inverters.
Goal: Reduce size while maintaining the "multiplied" slope.
Result: High sensitivity in a compact footprint.
We implemented this using SIRs to keep it small.
Lo implementamos usando resonadores compactos (SIR) para que el sensor no fuera gigante.
Inverters: Results
Validated with perforated dielectric samples.
Outcome: Sensitivity scales with the number of inverters.
Limitation: Size grows with each inverter stage.
It works, but it gets big. That's why we moved to coupled lines.
Funciona, pero el tamaño crece con cada etapa. Por eso pasamos a líneas acopladas.
2. Coupled Lines & SIRs
Concept: Two resonators coupled together create two split frequencies.
Reducing coupling $\rightarrow$ Resonances get closer $\rightarrow$ Steeper Phase
Slope .
Weak coupling brings the two resonance peaks closer, creating a very steep phase transition between them.
Al acoplar dos resonadores débilmente, sus frecuencias se acercan, creando una transición de fase muy brusca (alta
sensibilidad) entre ellas.
The Coupling Effect
Strong Coupling: Peaks far apart, shallow slope.
Weak Coupling: Peaks close, steep slope.
Limit: If coupling is too weak, recover the single resonator behavior.
Explain the trade-off. We want weak coupling, but not too weak or we lose the signal.
Queremos un acoplamiento débil para máxima sensibilidad, pero si es demasiado débil perdemos la señal. Hay un punto
óptimo.
Coupled SIRs Results
Unified Framework: Analyzed all 4 coupling topologies.
Achievement: Highest senstivity at the time.
Publications: 5 compendium papers from this technique.
We generalized this to SIRs and analyzed all possible topologies.
Generalizamos esto a todo tipo de resonadores y logramos la máxima sensibilidad del grupo hasta la fecha.
Defect Ground Resonators
Concept: DB-DGS (Dumbbell Defected Ground Structure).
Separates fluid (ground plane) from circuit (top plane).
Allows easy integration of fluidic channels.
Publication: [pub:DB-DGS]
DB-DGS allows putting the liquid on the back.
Usamos una estructura que nos permite poner el líquido por detrás, separado del circuito eléctrico.
Microfluidics Integration
Challenge: Measuring liquids requires precise handling.
Liquids allow fine control of permittivity.
Separate electronics from liquid.
Need repeatability to validate sensors.
Liquids allow fine control of permittivity, but are hard to measure. They are messy and lossy. We need to separate
electronics from liquid to validate sensors.
Medir líquidos es difícil. Son "sucios" y absorben mucha señal. Necesitamos proteger la electrónica.
Automated System
System: Pumps + Temperature Control + VNA.
Benefit: Automated validation of thousands of samples.
Key for AI: Enabled generation of large datasets.
We built a robot to measure. This was crucial for the AI part later.
Construimos un sistema automático (robot) para medir. Esto fue clave para generar los datos necesarios para la IA.
3. Resonance-Antiresonance
Concept: Interaction between a resonance and an antiresonance.
Mechanism: Ground-plane CSRR coupled to a microstrip line, resonance shifts with coupling while
antiresonance stays fixed.
A different topology using a CSRR in the ground plane.
Otra topología usando un resonador en el plano de tierra (CSRR).
Mechanical Tuning
Innovation: Sensitivity can be tuned by moving the feed line.
Benefit: Adapt sensitivity to the application without redesigning.
Mechanical tuning allows adjusting the "slope" on the fly.
Innovación: podemos ajustar la sensibilidad mecánicamente moviendo una pieza, adaptando el sensor a lo que
necesitemos medir.
Results
Sensitivity: > 6350° per unit permittivity.
Record: Highest sensitivity achieved in the thesis.
Application: Structural health monitoring (corrosion) or liquid analysis.
Achieved highest sensitivity.
Logramos la sensibilidad más alta de toda la tesis (> 6350°). Ideal para detectar corrosión.
4. Loss Engineering
Paradigm Shift: Instead of minimizing loss, it is a design parameter.
Concept: Losses can steepen the phase slope near resonance.
Result: Enhanced sensitivity without changing the geometry.
Traditionally, loss is bad. We show that controlled loss can actually boost sensitivity by making the phase slope
steeper.
En lugar de evitar las pérdidas, las usamos para aumentar la pendiente de fase y mejorar la sensibilidad.
Passive Implementation
Method: Adding resistive loading to coupled lines.
Mechanism: Resistors control the coupling quality factor.
Outcome: Steeper phase response in the sensing region.
We proved this by adding resistors to coupled lines. It works passively.
Demostramos esto añadiendo resistencias a líneas acopladas. Funciona de forma pasiva.
Active Tunable Sensitivity
Method: Using a JFET as a voltage-controlled resistor.
Innovation: Real-time control of sensitivity.
Application: Adapt the sensor to different materials dynamically.
We took it a step further with a JFET, allowing us to tune the sensitivity in real-time.
Fuimos un paso más allá usando un JFET para controlar la sensibilidad en tiempo real.
Part IV
AI-Driven Sensing
Transition to the second major pillar: AI and Selectivity.
The Selectivity Challenge
High Sensitivity $\neq$ Identification
We can detect that something has changed, but not what has changed.
Arbitrary High Sensitivity Accomplished
Explore new applications where selectivity is important a part from sensitivity.
Transition point: We mastered sensitivity, but we still have the "smoke detector" problem.
Punto de inflexión: Ya tenemos mucha sensibilidad, pero nos falta saber *qué* estamos midiendo (el problema del
detector de humo).
The Solution: Spectrometry + AI
Spectrometry: Materials behave differently at different frequencies.
Broadband Measurement: Capture the "fingerprint" of the material.
Why AI? Analytical models are too complex for multi-variable inverse problems.
Traditional design process: Physical Model $\rightarrow$ Analytical Inversion $\rightarrow$
Parameter
New design process: Data $\rightarrow$ Machine Learning Model $\rightarrow$ Prediction
To identify materials, we need broadband data and AI to decode it.
La solución es mirar muchas frecuencias a la vez (huella dactilar) y usar IA para descifrar los datos, ya que las
ecuaciones son demasiado complejas.
The Pipeline
Design Sensor: For contrast, not just sensitivity.
Generate Data: Automated measurements / Simulation.
Train Model: Learn the mapping (Spectrum $\rightarrow$ Variable).
Inference: Real-time prediction.
El proceso: 1) Diseñar sensor, 2) Generar muchos datos, 3) Entrenar el modelo, 4) Predecir en tiempo real.
Case 1: Remote Sensing with FSS
Scenario: Detecting liquid spills remotely.
Sensor: Frequency Selective Surface (FSS) tag.
Challenge: Signal depends on liquid type AND position.
Using a passive tag to detect spills. Complex signal.
Caso 1: Detectar vertidos a distancia. La señal es compleja porque depende del líquido y de dónde ha caído.
FSS Solution: CNN + U-Net
Input: Single radar echo (1D spectrum).
CNN Model: Signal feature extraction.
MLP Model: Latent space mapping.
U-Net Model: Spatial Mask reconstruction.
We used Deep Learning to solve the inverse problem.
Usamos Deep Learning (redes neuronales) para resolver el problema inverso.
FSS Results
Output: Liquid Type + Spatial Image of the Spill .
We reconstruct an image from a spectral microwave measurement!
Highlight the "magic": getting a 2D image from a 1D signal.
Resultados: Con una sola señal, la IA nos dice qué líquido es y dibuja un mapa del vertido. ¡Imagen 2D desde señal
1D!
Case 2: Multi-Analyte Sensing
Goal: Measure Glucose, Sodium, and Potassium simultaneously.
Context: Blood analysis.
Challenge: Selectivity. Distinguishing ions from glucose.
Medical application. Hard to distinguish components.
Caso 2: Análisis de sangre (glucosa, sodio, potasio). Es difícil distinguir unos de otros.
Multi-Analyte Sensor Design
Sensor: Multi-resonant spiral sensor.
Feature: Broadband response (100 MHz - 6 GHz).
Design: Optimized to have features sensitive to different components.
Broadband sensor to capture all details.
Sensor de banda ancha para capturar todos los detalles necesarios.
Data Generation
Automated System: Used the microfluidics system from Objective 2.
Dataset: Hundreds of mixtures with a set of concentrations.
Model: CNN + Regression Neural Network.
The robot was essential here.
El robot fue esencial para generar los miles de datos que necesita la IA.
Multi-Analyte Sensor Results
Model: Regression Neural Network.
Outcome: Accurate concentrations for all 3 solutes.
Error: Low enough for clinical screening potential.
The model successfully disentangled the three components.
La IA logró separar los tres componentes con precisión. Potencial para uso clínico.
Part V
Applications & Discussion
Transition to global results and real-world applications.
Evolution of Performance
Figure of Merit (FoM): Sensitivity / Size.
Consistent trend: Higher sensitivity in smaller footprints.
Show the table comparing all sensors. We consistently improved the trade-off.
Resumen: Hemos conseguido sensores cada vez más sensibles y más pequeños.
Loss Engineering and Tunability
Paradigm Shift: Loss is usually bad.
Our Finding: Controlled loss can sharpen the phase response.
Used resistors/JFETs to tune sensitivity.
Loss as a Design Parameter .
Enables dynamic adjustment of sensitivity for specific application requirements.
Briefly mention loss engineering: turning a "problem" into a "feature".
Ingeniería de pérdidas: Descubrimos que controlando las pérdidas podemos mejorar la sensibilidad.
Application: Agrifood
Smart Cellar Project
Goal: Monitor Clean in Place process to reduce waste.
Tech: Planar sensors integrated in pipes.
Partner: Garcia Carrion - CPP Project.
Real application in wine industry.
Aplicación real en la industria del vino: monitorizar la fermentación.
Application: Agrifood
Smart Cellar Project
Real application in wine industry.
Aplicación real en la industria del vino: monitorizar la fermentación.
Application: Structural Health
Corrosion Detection
Goal: Detect rust on street light poles.
Tech: Resonance-Antiresonance sensors.
Partner: RUBATEC.
Structural health monitoring.
Detección de corrosión en farolas y estructuras metálicas.
Application: Remote Sensing
WiFi CSI Monitoring
Goal: Use existing WiFi signals for sensing.
Tech: AI analysis of Channel State Information.
Outcome: Passive environmental monitoring.
Usar el WiFi existente como sensor para monitorizar el entorno.
Application: Biomedical
Non-Invasive Glucose
Goal: Non-invasive measurement of glucose in blood.
Tech: Multi-Analyte sensor + Sensor Fusion + AI.
Status: Proof of concept successful.
The most impactful application.
La aplicación más impactante: medir glucosa sin agujas.
Part VI
Future Work & Conclusions
Transition to future outlook and final conclusions.
Future Work: Immediate
Post-Doc Project
Focus: Non-invasive Glucose Monitoring.
Plan:
In-vivo measurements.
Clinical validation.
Miniaturization.
State the clear next step: applying the AI+Sensor tech to the "holy grail" of glucose monitoring.
Futuro inmediato: Post-doc para llevar el medidor de glucosa a la realidad clínica.
Future Work: Long Term
Generative AI Design: AI designing the sensor.
Commodity Hardware: Sensing with smartphones/WiFi chips.
Multi-modal Fusion: Combining microwave with optical/acoustic.
A largo plazo: IA que diseña sensores, usar móviles como sensores y combinar con otras tecnologías.
Conclusions
Sensitivity: Maximized via phase-slope techniques (Inverters, Coupling, Loss).
Methodology: From analytical design to AI-driven paradigm.
Impact: Validated in real applications (Liquids, Remote, Bio).
A complete journey from fundamental physics to intelligent systems.
Wrap up. We started with physics/circuits and evolved to AI systems, solving real problems.
Conclusiones: Hemos maximizado la sensibilidad, cambiado la forma de diseñar usando IA y validado la tecnología en
aplicaciones reales. Un viaje completo de la física a los sistemas inteligentes.
Acknowledgements
Thank you to:
Prof. Ferran Martín
GEMMA-CIMITEC Group
Funding Agencies (FPU, CPP)
Collaborators (UBC, RUBATEC, Garcia Carrion)
Family & Friends
Thank You!
Standard acknowledgements.
Agradecimientos a director, grupo, financiación y colaboradores. ¡Gracias!
Reflective-Mode Planar Microwave Sensors: Sensitivity & Selectivity Optimization Using Advanced Techniques
& Artificial Intelligence
Pau Casacuberta Orta
Supervisor: Prof. Ferran Martín Antolín
PhD Program in Electronic and Telecommunication Engineering
Welcome the audience, state that this is a compendium thesis across four FPU-funded years,
describe the publication
labeling scheme, and highlight the balance between research, teaching, and industrial pilots from
2021 to 2025.
Ruta general: tesis compendio con 11 artículos (2021–2025) apoyada por beca FPU y colaboraciones
CPP; se distinguen
publicaciones principales (\pubref{}) y auxiliares (\ncpubref{}).